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1. Introduction

Flavour Changing Neutral Current (FCNC) processes are not only powerful tests of the

Standard Model (SM) but also provide very stringent tests for any physics beyond it. The

smallness of FCNC processes in the SM is attributed to the fact that these processes are

generated at loop level and are further suppressed by the CKM factors. Due to their

smallness within the SM these processes can also be very sensitive to any new physics

beyond the SM. Amongst the many FCNC decays involving B and K-mesons the decays

of the form b → s + missing energy have been the focus of much investigation at the B

factories Belle and Babar.

Of particular interest, in the SM, is the decay b → sνν̄, as it has the theoretical

advantage of uncertainties much smaller than those of other decays, due to the absence

of a photonic penguin contribution and hadronic long distance effects. However, in spite

these theoretical advantages, it might be very difficult to measure the inclusive mode

B → Xsνν̄, as it requires a construction of all the Xs’s. Therefore the rare B → K(K∗)νν̄

decays play a special role, both from experimental and theoretical points of view. Also

the branching fractions of the B-meson decays are quite large, with theoretical estimates

of Br(B → K∗νν̄) ∼ 10−5 and Br(B → Kνν̄) ∼ 10−6 [1]. These processes, based on

b → sνν̄, are very sensitive to non-standard Z models and have been extensively studied

in the literature [2 – 4].

As such, any new physics model which can provide a relatively light new source of

missing energy can potentially enhance the observed rates of B → K(K∗)+missing energy

(B → K(K∗) + 6E), where many models have been proposed which provide such low mass

candidates (which can contribute to b → s + missing energy). Note that in reference [3] the
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phenomenology of such low mass scalars was explored. Such studies have also been done

in the context of large extra dimension models [5] and leptophobic Z ′ models [1, 2]. One

such model, which has excited much interest recently, is that of Unparticles, as proposed

by H. Georgi [6]. In this model we assume that at a very high energy our theory contains

both the fields of the SM and the fields of a theory with a nontrivial IR fixed point,

which he called the Banks-Zaks (BZ) fields [7]. In his model these two sets interacted

through the exchange of particles with a large mass scale MU , where below this scale there

were nonrenormablizable couplings between the SM fields and the BZ fields suppressed by

powers of MU . The renormalizable couplings of the BZ fields then produced dimensional

transmutation, and the scale-invariant unparticle fields emerged below an energy scale ΛU .

In the effective theory below ΛU the BZ operators matched onto the unparticle opera-

tors, and the nonrenormaliable interactions matched onto a new set of interactions between

the SM and unparticle fields. The end result was a collection of unparticle stuff with scale

dimension dU , which looked like a non-integral number dU of invisible massless particles,

whose production might be detectable in missing energy and momentum distributions [6].

Recently there has been a lot of interest in unparticle physics [6, 8 – 16], where the sig-

natures of unparticles have been discussed at colliders [8, 10, 15], in Lepton Flavor Violating

(LFV) processes [13], cosmology and astrophysics [16], and low energy processes [11, 12, 9].

In the present work we study the B → K(K∗) + 6E decay in unparticle theory, where

this work is organized as follows: In section 2 we calculate the various contributions from

both the SM and unparticle theory to the above-mentioned decays. Section 3 contains our

numerical analysis and conclusions.

2. Differential decay widths

In the SM the decay mode B → K(K∗) + 6E is described by the decay B → K(K∗)νν̄. As

was noted earlier, unparticles can also contribute to these decays. Hence a comparison of

the signatures of the two decay modes B → K(K∗)νν̄ and B → K(K∗)U is required.

In the SM the decay B → K(K∗)νν̄ is described by the quark level process b → sνν̄

through the effective Hamiltonian:

H =
GF√

2

α

2π
VtbV

∗
tsC10 s̄γµ (1 − γ5) b ν̄γµ (1 − γ5) ν , (2.1)

where

C10 =
X(xt)

sin2θw
, (2.2)

and the X(xt) is the usual Inami-Lim function, given as:

X(xt) =
xt

8

{

xt + 1

xt − 1
+

3xt − 6

(xt − 1)2
ln(xt)

}

, (2.3)

with xt = mt/m
2
W .
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Similarly, the unparticle transition at quark level can be described by b → sU , where

we shall consider the following operators:

Scalar unparticle operators =⇒ CS
1

ΛdU
U

s̄γµb ∂µOU + CP
1

ΛdU
U

s̄γµγ5b ∂µOU ,

Vector unparticle operators =⇒ CV
1

ΛdU−1

U

s̄γµb Oµ
U + CA

1

ΛdU−1

U

s̄γµγ5b Oµ
U . (2.4)

Before proceeding with our analysis note that we shall write the propagator for the

scalar unparticle field as [8, 10]:

∫

d4xeiP.x〈0|TOU (x)OU (0)|0〉 = i
AdU

2 sin(dUπ)
(−P 2)dU−2 , (2.5)

where

AdU =
16π5/2

(2π)2dU

Γ(dU + 1/2)

Γ(dU − 1)Γ(2dU )
.

2.1 The Standard Model

Using the SM effective Hamiltonian for the quark level process b → sνν̄, as given in

equation (2.1), we can calculate the differential decay width of B → K(K∗)νν̄ (using the

form factor definitions for the B → K transition as given in appendix A.1).

After taking into account the three species of SM neutrinos, we evaluate the differential

decay width as a function of K-meson energy (EK) as:

dΓSM

dEK
=

G2
F α2

27π5m2
B

|VtsV
∗
tb|2 |C10|2f2

+(q2) λ3/2(m2
B ,m2

K , q2) , (2.6)

where λ(m2
B ,m2

K , q2) = m4
B +m4

K + q4−2m2
Bq2−2m2

Kq2−2m2
Km2

B, and q2 = m2
B +m2

K −
2mBEK .

Similarly, for the B → K∗ case, using the definition of form factors for B → K∗

transitions as given in appendix A.2, the differential decay rate in the SM can be calculated

as:

dΓSM

dEK∗

=
G2

F α2

29π5m2
B

|VtsV
∗
tb|2λ1/2|C10|2

(

8λq2 V 2

(mB + mK∗)2
+

1

m2
K∗

[

λ2 A2
2

(mB + mK∗)2

+(mB + mK∗)2(λ + 12m2
K∗q2)A2

1 − 2λ(m2
B − m2

K∗ − q2)Re(A∗
1A2)

])

, (2.7)

where λ = m4
B +m4

K∗ +q4−2m2
Bq2−2m2

K∗q2−2m2
K∗m2

B , and q2 = m2
B +m2

K∗−2mBEK∗ .

2.2 The scalar unparticle operator

As listed earlier, the following scalar operators can contribute to the B → K(K∗) U decay:

CS
1

ΛdU
U

s̄γµb ∂µOU + CP
1

ΛdU
U

s̄γµγ5b ∂µOU =
1

ΛdU
U

s̄γµ (CS + CP γ5) b ∂µOU , (2.8)
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where we have defined our form factors in appendix A. As such, the matrix element for the

process B(p) → K(p′) + U(q) can be written as:

MS =
1

ΛdU
U

CS

[

f+(m2
B − m2

K) + f−q2

]

OU . (2.9)

The decay rate for B(p) → K(p′)U(q) can now be evaluated to be:

dΓSU

dEK
=

1

8π2mB

AdU

Λ2dU
U

|CS |2
√

E2
K − m2

K

(

m2
B + m2

K − 2mBEK

)dU−2

×
[

f+(m2
B − m2

K) + f−(m2
B + 2m2

K − 2mBEK)

]2

. (2.10)

For the B → K∗ transition our calculation proceeds along the same lines, where the

matrix element for B(p) → K∗(p′)U(q) can be written as:

MS =
iCP

ΛdU
U

(ǫ.q) {(mB + mK∗)A1 − (mB − mK∗)A2 − 2mK∗ (A3 − A0)} OU , (2.11)

and the differential decay rate as:

dΓSU

dEK∗

=
mB

2π2

AdU

Λ2dU
U

|CP |2A2
0

(

E2
K∗ − m2

K∗

)3/2 (

m2
B + m2

K∗ − 2mBEK∗

)dU−2
. (2.12)

As can seen from the above expressions the scalar unparticle contribution to the decay

rate for B → KU and B → K∗U will depend upon CS and CP respectively. This shall allow

us to place constraints upon CS and CP from these two different decay modes. This issue

shall be re-visited in the final section of this paper.

2.3 The vector unparticle operator

Along similar lines as followed in the previous subsection, we shall now make use of the

vector unparticle operators:

CV
1

ΛdU−1

U

s̄γµb Oµ
U + CA

1

ΛdU−1

U

s̄γµγ5b Oµ
U =

1

ΛdU−1

U

s̄γµ (CV + CAγ5) b Oµ
U ,

and the form factors of appendix A, to calculate the matrix element for B(p) → K(p′)U(q):

MV =
1

ΛdU−1

U

CV

[

f+(p + p′)µ + f−(p − p′)µ

]

Oµ
U . (2.13)

And as such we calculate the differential decay rate as:

dΓV U

dEK
=

1

8π2mB

AdU

Λ2dU−2

U

|CV |2|f+|2
(

m2
B + m2

K − 2mBEK

)dU−2
√

E2
K − m2

K

×
{

− (m2
B + m2

K + 2mBEK) +
(m2

B − m2
K)2

(m2
B + m2

K − 2mBEK)

}

. (2.14)
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For the B → K∗ case the matrix element for B(p) → K∗(p′)U(q) is:

MV =

{ CA

ΛdU−1

U

(

iǫµ(mB+mK∗)A1−i(p+p′)µ(ǫ.q)
A2

mB +mK∗

−iqµ(ǫ.q)
2mK∗

q2
[A3−A0]

)

+
CV

ΛdU−1

U

(

2V

mB+mK∗

ǫµνρσǫνpρp′σ
)}

Oµ
U . (2.15)

And therefore the differential decay rate will be:

dΓV U

dEK∗

=
1

8π2mB
(q2)dU−2

√

E2
K∗−m2

K∗

AdU
(

ΛdU−1

U

)2

{

8|CV |2m2
B(E2

K∗−m2
K∗)

V 2

(mB+mK∗)2

+|CA|2
1

m2
K∗(mB + mK∗)2q2

[

(mB+mK∗)4(3m4
K∗+2m2

Bm2
K∗−6mBm2

K∗EK∗+m2
BE2

K∗)A2
1

+4m4
B(E2

K∗−m2
K∗)2A2

2+4(mB+mK∗)2(mBEK∗−m2
K∗)(m2

K∗−E2
K∗)m2

BA1A2

]}

. (2.16)

To obtain the total decay width for B → KU we must integrate over EK in the range

mK < EK < (m2
B + m2

K)/2mB , whereas to obtain the total decay width for B → K∗U we

must integrate over EK∗ in the range mK∗ < EK∗ < (m2
B + m2

K∗)/2mB .

3. Numerical results and conclusions

The total contribution to B → K(K∗) + 6E can be written as:

Γ = ΓSM + ΓU , (3.1)

where the ΓSM and ΓU are the SM and unparticle contributions to the B → K(K∗) +

6E decay. And we should note that in the SM the missing energy in the final state is

attributed to the presence of neutrinos. Hence the SM contribution to this process is given

by B → K(K∗)νν̄. In the present case this signature can be mimicked by the process

B → K(K∗) U , where we shall now try to estimate the bounds on the unparticles from the

experimental constraints on missing energy signatures, as given by the B-factories BELLE

and BaBar [17, 18]:

Br(B → Kνν̄) < 1.4 × 10−5 ,

Br(B → K∗νν̄) < 1.4 × 10−4 .

It is important to note that the SM process B → K(K∗)νν̄ provides a unique energy

distribution spectrum of final state hadrons (K/K∗ in our case). Presently the experimental

limits on the branching ratio of these processes are about one order below the respective

SM expectation values. However, these processes are expected to be measured at future

SuperB factories [19]. As such, we presently only have an upper limit on the branching

ratio of these processes, where to estimate the constraints on the unparticle properties.

Note that H. Georgi, in his first paper on unparticles, tried to emphasize that unpar-

ticles behave as a non-integral number of particles [6]. He further went on to analyze the
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Figure 1: The differential branching ratio for: (a) Left panel: B → K + 6E as a function of the

hadronic energy (EK). (b) Right panel: B → K∗ + 6E as a function of the hadronic energy (EK∗).

The other parameters are dU = 1.9, ΛU = 1000GeV, CP = CS = 2 × 10−3 and CV = CA = 10−5.

distribution of the u-quark in the decay t → uU . It was argued that the peculiar shape of

the distributions of Eu (the energy of the u-quark) may allow us to discover unparticles

experimentally. As such, we have attempted to extend this same analogy to the process

presently under consideration.

Finally, before presenting our numerical results, note that the future SuperB factories

will be measuring the process B → K(K∗) + 6E by analyzing the spectra of the final

state hadron. In doing this measurement at B-factories a cut for high momentum on the

hadron is imposed, in order to suppress the background. Recall that unparticles would

give us an unique distribution for the high energy hadron in the final state, such that in

future B-factories one will be able to distinguish the presence of a scale invariant sector

(or unparticles) by observing the spectrum of final state hadrons in B → K(K∗) + 6E.

With this idea in mind we have tried to plot the differential decay width of B →
K(K∗) + 6E as a function of EK(EK∗) in figure (1). As we can see from these figures the

unparticle operators (especially the vector operators) give us a very distinctive distribution

for the final state hadron’s energy. The distribution of the unparticle contribution is

strikingly different when we include a vector operator for a highly energetic final state

hadron. As such, unparticle stuff can give a distinctly different signature from the SM in

this regime, which it should be noted is experimentally more favorable at future SuperB

factories.

In the next set of figures, figure (2), we have tried to analyze the constraints on the

unparticle’s scaling dimensions (dU ) from different values of the cut-off scale ΛU . In these

plots we have used some specific values of the effective couplings CS, CP , CV and CA. As

we can see from these figures the branching ratio is very sensitive to the scale dimension

dU and ΛU . In figure (3) we have shown the same plots for B → K∗ + 6E. From these two

figures we can observe that the vector operators are more strongly constrained as compared

to scalar operators. The second feature is that B → K + 6E provides better constraints
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Figure 2: The branching ratio for B → K + 6E as a function of dU for various values of ΛU . The

left panel is for the contribution from the scalar operator, and the right panel is for the vector

operator. The other parameters are CS = 2 × 10−3 and CV = 10−5.
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Figure 3: The branching ratio for B → K∗ + 6E as a function of dU for various values of ΛU .

The left panel is for the contribution from the scalar operator, and the right panel is for the vector

operator. The other parameters are CP = 2 × 10−3 and CV = CA = 10−5.

than the B → K∗ + 6E decay.

We have next tried to estimate the limits on the allowed values of the effective cou-

plings, CS, CP , CV and CA, from the present experimental limits on the branching ratio of

B → K(K∗) + 6E. Therefore, in figure (4) we have shown the dependence of the branching

ratio of B → K + 6E on CS and CV . As we can see from the expressions of the differential

decay rate for B → K + 6E, given in the previous section, if we consider the scalar (vector)

operators, then the rate for this process is only dependent on CS (CV ).

Finally, in figure (5) we have shown the dependence of the branching ratio of B →
K∗+ 6E on the effective vertices. If we consider scalar operators then the rate of this process
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Figure 4: The branching ratio for B → K + 6E as a function of CS (left panel) and CV (right panel).

The cutoff scale has been taken to be ΛU = 1000GeV.

is only dependent upon CP , whereas if we consider the vector operators then the rate can

depend upon both CV and CA.

To re-emphasize these last few points:

• B → K+ scalar unparticle operator shall constrain the parameter CS,

• B → K∗+ scalar unparticle operator shall constrain CP ,

• B → K+ vector unparticle operator will constrain only CV ,

• whilst B → K∗+ vector unparticle operator will constrain both CV and CA.

To conclude, in this work we have analyzed the effects of unparticles on the missing

energy signatures of rare B-decays. We have tried to argue that B → K(K∗)+ 6E provides

very useful constraints on the parameters of the model, where we have considered four

operators, namely the scalar, pseudo-scalar, vector and axial vector operators. Both the

modes B → K + 6E and B → K∗ + 6E are different functions of these four operators, and

hence provide independent constraints on the parameter space of the model. The set of

operators we have considered, in principal, also contributes to meson anti-meson mixing,

namely, K − K̄, Bd − B̄d, Bs − B̄s and D − D̄ mixing. Detailed analyses of these, within

the context of unparticle physics, has been done in reference [12]. Finally, note that the

constraints provided by B → K(K∗) + 6E in some regions can be much stronger than the

ones provided by meson anti-meson mixing.
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A. The form factors

A.1 The form factors for the B → K transition

The form factors for the B → K transition can be written as [20]:

〈K(p′)|s̄γµb|B(p)〉 = (p + p′)µf+ + qµf− ,

〈K(p′)|s̄γµγ5b|B(p)〉 = 0 , (A.1)

where q = p − p′. Or alternately from the light cone sum rules [21] as:

〈K(p′)|s̄γµb|B(p)〉 =

{

(p + p′)µ − m2
B − m2

K

q2
qµ

}

fP
+ (q2) +

{

m2
B − m2

K

q2
qµ

}

fP
− (q2) . (A.2)

Note that we can relate these two sets of form factors by:

f+ = fP
+ ,

f− =
m2

B − m2
K

q2

(

fP
0 − fP

+

)

. (A.3)
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m1 r1 r2 mfit

fP
+ 5.41 0.1616 0.1730 -

fP
0 - - 0.3302 5.41

Table 1: The parameters for the B → K form factors [20].

r1 r2 m2
fit

mR

V 0.923 - 0.511 49.40 5.32

A0 1.364 - 0.99 36.78 5.63

A1 - 0.290 40.38 -

A2 -0.084 0.342 52.00 -

Table 2: The parameters for the B → K∗ form factors [20].

In our numerical results we have followed the parameterization of Ball and Zwicky [21]:

fP
0 =

r2

1 − q2/m2
fit

,

fP
+ =

r1

1 − q2/m2
1

+
r2

(1 − q2/m2
1)

2
, (A.4)

where the fitted parameters are given in table 1.

A.2 The form factors for the B → K∗ transition

The form factors for the B → K∗ transition can be written as [20]:

〈K∗(p′)|s̄γµb|B(p)〉 = ǫµνρσǫνpρp′σ
2V (q2)

mB + mK∗

,

〈K∗(p′)|s̄γµγ5b|B(p)〉 = iǫµ(mB + mK∗)A1(q
2) − i(p + p′)µ(ǫ.q)

A2(q
2)

mB + mK∗

−iqµ(ǫ.q)
2mK∗

q2
[A3(q

2) − A0(q
2)] , (A.5)

where have again defined q = p− p′. For this transition we have used the parameterization

of reference [20]:

F (q2) =
r1

1 − q2/m2
R

+
r2

1 − q2/m2
fit

, (for V,A0)

F (q2) =
r1

1 − q2/m2
fit

+
r2

(1 − q2/m2
fit

)2
, (for A2)

F (q2) =
r2

1 − q2/m2
fit

, (for A1) (A.6)

where

A3(q
2) =

mB + mK∗

2mK∗

A1(q
2) − mB − mK∗

2mK∗

A2(q
2) . (A.7)

Note that the fitted parameters used in the above equations have been given in table 2.
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